Practical approach in system engineering requirements between A-SPICE and ISO 26262

2018. 02.

Jerome Joo

System engineering process group v.s ISO 26262

* ISO 26262 is based on 2nd edition

Traceability and consistency

- Engineering process group is divided with system engineering process group and software engineering process group (ENG → SYS, SWE)
- Traceability and bidirectional → Traceability and consistency
- Verification Criteria(SYS.2): Verification measure and inputs for system qualification test (SYS.5)
- Evaluate (SYS.3) : Alternative architecture

Traceability and consistency especially in safety functions

- System level development initiation(Part 4) → overall product development(Part 2) and it is only informative, not requirements
- Only refer to cybersecurity concept, but it is other approach required (i.e. TARA etc.)
- Clarify the safety mechanism concept of latent faults
- 1st 2nd Both are addressing that safety and non-safety requirements are handled and satisfied in one process
- 1st 2nd Both are requiring safety analysis should be necessary but 2nd is not addressing quantitative analysis but only qualitative method.

Verification of outputs is emphasized on both A-SPICE and ISO 26262 by verification criteria, consistency and verification activities

What's a system?

What is a system in automotive E/E industries?

- It is very important concept in product development process but many R&D dose not define the its concept well
- System is real existence or the upper concept of implementation

Target object : Embedded automotive system System :

- 1. combination of interacting elements organized to achieve ore or more stated purpose.
- 2. something of interest as a whole or as composted of parts.
- 3. interacting of elements to accomplish a defined objective. (Terminology of A-SPICE \rightarrow ISO/IEC/IEEE 24765, 29119)

4. Element is one of the parts that makes up a system. An element may comprise hardware, software, mechanical or manual operations. (A-SPICE PRM)

System or array of systems : to implement a function at the vehicle level

System : set of elements that relates at least a sensor, a controller and an actuator with one another and the related sensor or actuator can be included in the system, or can be external to the system. (ISO 26262)

Item

1..*

Function

How to specify the system requirements

시스템 레벨에서의 기능을 표현하는 것은 어려운 주제임 → System modeling 시도 (Based on UML) - 차량 동작에서 시스템의 역할 및 시스템의 경계의 정의가 우선되 되어야 함 - 차량의 동작-경계-역할에 따라 시스템 기능이 정의되고, 설계가가 되어야 함

From : EAST-ADL (Architecture Design Language) - http://www.east-adl.info/

time

The method of system requirements' specification.

SysML, UML (MDD) are useful in system modeling which describes functional concept or requirements. But it is not appropriate to implementation level → Engineering Model(MBD) 요즈음은 통칭 MBD라고 통용됨

SysML description of lane change

System requirements include functional and non functional requirements in lane change function

From : K.Gruber, J. Huemer (BMW Group) Integrated Description of Functional and Nonfunctional Requirements for Automotive Systems Design Using SysML

All engineering steps requiring the some level architecture

Requirements which have no concept of architecture are the fiction

spid

System engineering process group

System's requirements analysis

System requirements shall have same attributes which is required in the requirements engineering

System level에서 요구사항을 기술하기 위한 방법

- EARS can be converted to UML
- 7 requirements types

Req. Type	Description	Example
Info (Information) 정보	상황이나 이론을 설명하거나 요구사항에 대 한 정보를 제공	
UB (Ubiquitous) 주요 일반 기능	항상 무엇(What)이 어떤 일(Functionality)을 수행하는지에 대해 기술	<entity>는 <functionality> 해야 한다</functionality></entity>
		<entity>는 <entity>의 <functionality>를 (위해)대해 <functionality> 해야 한다</functionality></functionality></entity></entity>
EV (Event-Driven) 이벤트 기능	시스템의 경계조건에서 이벤트가 감지되거 나 입력되었을 경우(When)에만 반응 (Functionality)	<precondition><mark>일 때 (발생하면)</mark> <entity>는 <functionality>해야 한다.</functionality></entity></precondition>
		<entity>가 <functionality>했을 때 (하면) <entity>는 <functionality>해야 한다.</functionality></entity></functionality></entity>
UW (Unwanted Behavior) 의도하지 않은 동작	의도하지 않은 상태나 동작(If precondition: 내부 결함, 외부 방해, 의존 고장 등에 의한) 이 감지되었을 경우에 반응(Functionality)	만약 <preconditions>이면(하면), <entity>는 <functionality> 해야 한다.</functionality></entity></preconditions>
		만약 <preconditions>이면(하면), <functionality>의 <functionality>는 <functionality>와 <functionality>에 대해 <functionality> 해야 한다.</functionality></functionality></functionality></functionality></functionality></preconditions>
ST (State Driven) 상태	특정 상태를 유지하기 위해 또는 특정 상태 동안에 수행해야 할 일(Functionality)	<in a="" specific="" state=""> 동안, <entity>는 <functionality> 해야 한다.</functionality></entity></in>
		<in a="" specific="" state=""> 동안, <functionality>는 <functionality> 해야 한다.</functionality></functionality></in>
OP (Optional Features) 추가 기능	주요 기능 외에 추가적으로 포함되어야 하는 기능(Functionality)에 대해 기술	<feature included="" is=""> 경우에는 <entity>는 <functionality> 해야 한다.</functionality></entity></feature>
		<preconditions>경우에는 <functionality>는 <functionality>에 대해 <functionality> 해야 한다.</functionality></functionality></functionality></preconditions>
HY (Hybrid) 복합 기능	Complex Requirements Syntax로써, 복합적 으로 발생할 수 있는 상황 대처 기능 (Functionality)에 대해 기술	<in a="" specific="" state=""> <mark>동안</mark>, <precondition>일 때 (발생하면) <entity>는 <functionality>해야 한다.</functionality></entity></precondition></in>
		<pre>preconditions>일 때 (발생하면), 만약 <precondition>이면(하면), functionality>는 <functionality>해야 한다.</functionality></precondition></pre>
		↓in a specific state> 동안, 만약 <precondition>이면, <functionality>는 ↓functionality>해야 한다.</functionality></precondition>

▶ <u>Hybrid Type</u> : EARS에서 정의한 2개 이상의 Type이 결합된 형태이며 각 Type별 검증 방안을 결합하여 검증 진행

Next, system architecture

Q&A

주백수 innospi.joo@espid.com innospi.joo@gmail.com