

Timing and Scheduling Analysis for Safe and Cost-Optimized ECU Development

Dr. Kai Richter, CTO, Symtavision GmbH August, 2015

Leading timing analysis expertise

- Reliable, safe & cost-effective embedded real-time systems, on time
- Architecture optimization & timing verification for ECUs, networks, E/E

focus of today

Custom-tailored timing analysis solutions

- Tools: SymTA/S & TraceAnalyzer
- Services: timing consulting, system optimization, timing audits, SW architecture audits, engineering, automation, training, support ...

Selected Customers

Global Presence

90% Innovation in Embedded Real-Time Systems

SYMTA VISION

Why Timing Analysis?

- → Cost and resource performance go down.
- → Timing requirements remain and quality must increase.
- → Needs systematic planning of timing, performance and resources.

Symtavision Tools Help Understanding and Optimizing Timing, SW Architecture and Schedule

- Make the SW architecture explicit (= model it!)
 - Who are the time consumers?
- Model key timing characteristics incl. the schedule
 - How often do they run?
 - How long do they execute?
 - How are they scheduled?

SYMTA VISION

- Simulate or analyze worst-case schedules
- Assess key acceptance criteria such as load, cycle time, response time, jitter
- Do this in architecture and concept development phase and compare with test results

SymtaSystem
ECU1 {SymtaSystem}
Core1 {ECU1}
🕮 Tasks [7]
弛 MODE1_1ms_task {Core1}
弛 MODE1_5ms_task {Core1}
砲 MODE1_10ms_task {Core1}
砲 MODE1_20ms_task {Core1}
砲 MODE1_50ms_task {Core1}
弛 MODEALL_I2C_isr {Core1}
MODEALL_UART_isr {Core

Element	Execution Time	Internal	Osek Ta	sk Parameter
Name	Core Execution Time	Activation	Priority	Task Type
硒 MODE1_1ms_task	[0.36061542 ms;0.4349691 ms]	P(1 ms)	6	Preemptive
而 MODE1_5ms_task	[0.02 ms;0.2 ms]	P(5 ms)	5	Preemptive
ளு MODE1_10ms_task	[0 ms;4.12891789 ms]	P(10 ms)	4	Preemptive
ளு MODE1_20ms_task	[0.1 ms;0.2 ms]	P(20 ms)	3	Preemptive
ளு MODE1_50ms_task	[0.1 ms;0.2 ms]	P(50 ms)	3	Preemptive
ளு MODEALL_I2C_isr	[10 µs;40 µs]	I ([01 ms])	10	NonPreemptive
而 MODEALL_UART_isr	[10 µs;40 µs]	I ([05 ms])	8	NonPreemptive

ISO 26262 and Timing

ISO 26262 and Task Response Times

ISO 26262 – Part 6 – Clause 6: "Specification of software safety requirements"

6.4.1 The software safety requirements shall address each software-based function whose failure could lead to a violation of a technical safety requirement allocated to software.

NOTE 1 Functions whose failure could lead to a violation of a safety requirement include:

functions related to performance or time-critical operations; and

6.4.2 The specification of the software safety requirements shall be derived from the technical safety requirements and the system design (see ISO 26262-4:—, 7.4.1 and ISO 26262-4:—, 7.4.5) and shall consider:

e)	the	timing	constraints;		
EXA	MP	LE 2	Execution or	reaction time derived from required response time at the system level.	

We must understand the timing of tasks including their response times (which result from the scheduling) in order to assess safety requirements. \rightarrow Scheduling analysis is needed

8/18

Symtavision Tools in the Process

BMW Example: SymTA/S for SIL3 E-Power Steering

applied since first introduction of electric steering in BMW X5 in 2005

© Symtavision GmbH, Germany

10/18

SYMTA VISION

Selected Symtavision References – ECU & Safety

- BMW Active Front Steering
 - Timing sign-off for safety architecture & software integration, ECU cost reduction
- AUDI Electronic Chassis Platform (active damping & level control)
 - Design of SW architecture and safe schedule of mixed-criticality (ASIL-A/B/C) multi-core ECU, ensure freedom-from-interference
- ▶ **GM** Lane Keeping
 - Capture relevant timing requirements, optimization of schedule to ensure safety concept
- VW Central Body Control Multi-Core ECU
 - Virtual timing verification of SW architecture to avoid interference between body functions and gateway functions
- **VW Components** Electronic Power Steering ECU
 - Integrated timing verification process including verification of three-layer ASIL-C safety architecture ECU cost reduction
- More: DENSO EPS, Hitachi chassis control, ...

Customer references / success stories available on request

me is Money – Real-Time is a lot of Mone

Summary: Key Timing Requirements for Safety

- Basic: CPU load < x% (for reserves and later updates)</p>
- Quality: Task response time < 90% (or other value < 100%) of cycle time in nominal (error-free) case, every task executes within its cycle
 → SymTA/S worst-case scheduling analysis helps increasing the coverage of timing corner cases
 → this helps also to avoid false positives of error detection, which would

lead to reduced availability / customer satisfaction.

Safety: Make absolutely sure that the error detection (specific task) will always (in worst case) be schedulable. Otherwise, a problem in the monitored task (e.g. endless loop) could prevent the error detection from running, which results in a violation of safety requirements.

 \rightarrow SymTA/S SW architecture checks detect such risk and help avoiding it through a suitable selection of the schedule

→ this is also known as freedom-from-interference requirement according to ISO 26262 in mixed-criticality systems

12/18

ISO 26262 and Freedom from Interference (FFI)

ISO 26262 - Part 6 - Clause 7: "Software Architectural Design"

7.4.9 The software safety requirements shall be allocated to the software components. As a result, each software component shall be developed in compliance with the highest ASIL of any of the requirements allocated to it.

7.4.11 If software partitioning (see Annex D) is used to implement freedom from interference between software components it shall be ensured that:

 a) the shared resources are used in such a way that freedom from interference of software partitions is ensured;

NOTE 1 Tasks within a software partition are not free from interference among each other.

			This	level	mu <mark>st b</mark>	е	 How to read this matrix: ASIL-C software must be
We			А	В	С	D	but can tolerate interference by ASIL-A and B
must	om e by l	А	-	crit	crit	crit	
ensure	. free fro erferenci this leve	В	ok	-	crit crit		
this !		С	ok	ok	-	crit	
	inte	D	ok	ok	ok	-	
			-				

13/18

AUDI Example: Mixed-Criticality Schedule Development

from: K. Schmidt, M. Buhlmann, C. Ficek, K. Richter, Design patterns for highly integrated ECUs, ATZ elektronik 01/2012

- Rate-Monotonic Schedule
 - very resource-efficient
 - ▶ but unsafe if priorities ≠ ASIL levels
 - execution time protection can help
- Criticality as Priority (CAPA)
 - very safe
 - but lousy if cycle time \neq ASIL levels
 - → cycle time changes can help

CAPA + Period Transformation + Execution Time Protection

Summary

Development With and Without Timing Analysis

Without timing analysis

- Undetected timing errors
- Lower quality & reliability
- Additional debugging cycles
- Higher cost

SYMTA VISION

With Symtavision Timing Analysis

SymTA/S & TraceAnalyzer

- Eliminate timing errors
- Higher quality, reliability, <u>safety</u>
- Quicker development
- Lower cost

Summary

- ISO 26262 formulates several requirements on the timing behavior of automotive systems
- Symtavision tools provide timing modeling, trace analysis and worstcase scheduling analysis for improved safety
 - Guarantee task deadlines in nominal case (error-free case)
 - Optimize SW architecture for error detection, task monitoring and mixed criticality
- Symtavision
 - Has 10 years of experience in key domains: chassis, driver assistance systems, powertrain, body, …
 - Is recognized expert for introduction of new technology: AUTOSAR, multi-core, ISO26262, FlexRay, CAN-FD, Ethernet, ...
- Symtaxision solutions are available through SPID in South Korea

Meet Timing Analysis Users at the 9th Symtavision NewsConference on Sept 30 + Oct 1

- Annual 2-day conference organized by Symtavision
- From 100 to 150 participants per year
- Attended by engineers, managers, and technology experts from industry and research to discuss and present the state-of-the-art and future developments in timing analysis
- Wednesday, Sep 30
 - 2 SymTA/S trainings
 - 5 Research presentations
 - 3 Interactive workshops
- Thursday, Oct 1

SYMTA VISION

- Industry presentations from Audi, BMW, Bosch, Fiat, Chrysler, Volkswagen ...
- On Friday there is an official AUTOSAR WP1 Timing User Group Meeting

Innovation in Real-Time

9th Symtavision NewsConference on Timing Analysis Sept. 30th - Oct. 1st 2015 in Braunschweig, Germany

