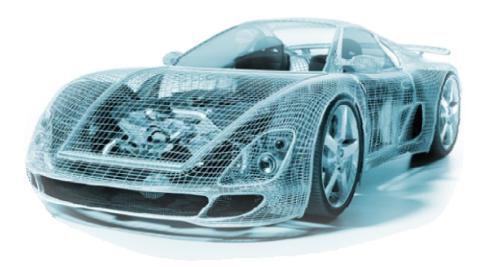
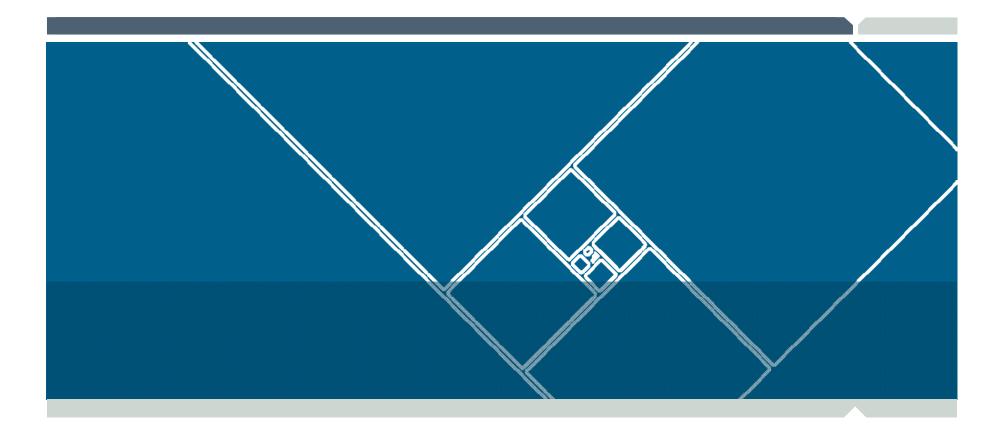


July 14-16, 2009

AA129 - Reliability in Embedded Systems

Safety Standards and Self Tests

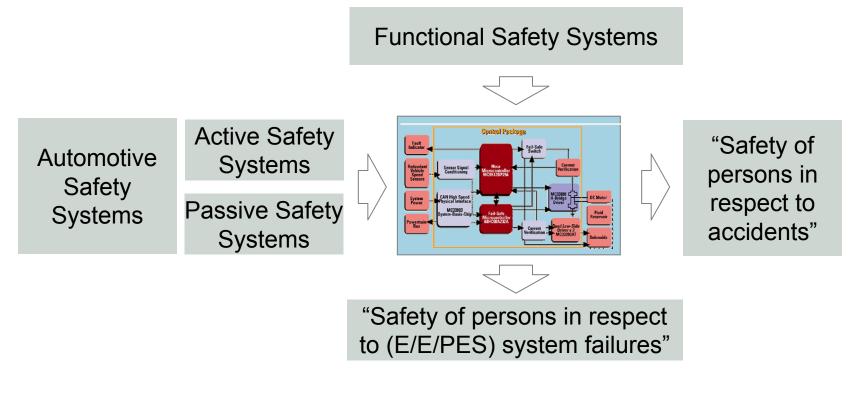

Christopher Temple Automotive Systems Technology Manager



Overview

- Introduction
- IEC61508 Safety Standard
- ISO26262 Safety Standard (draft)
- MCU Safety Continuum
- Basic Core Self-Test
- Summary

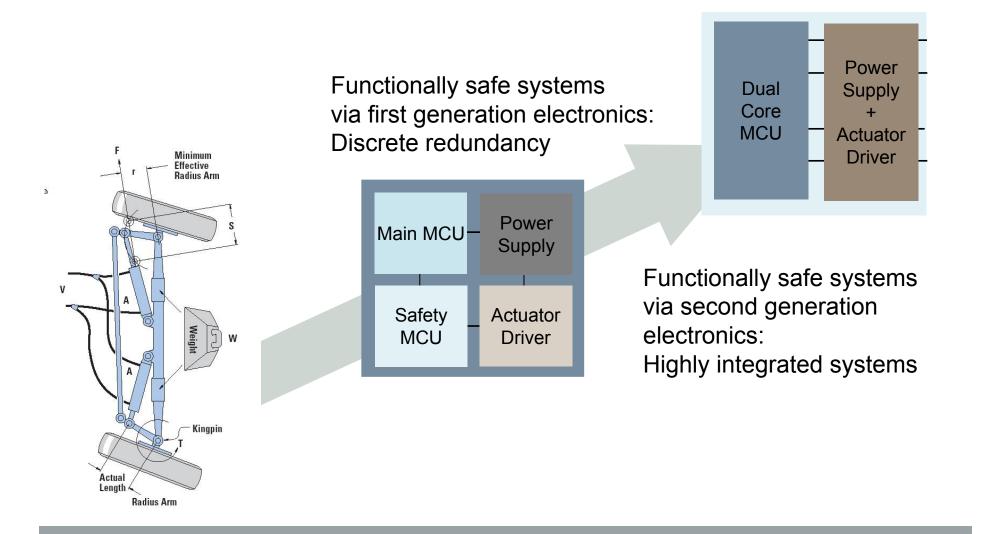
Introduction



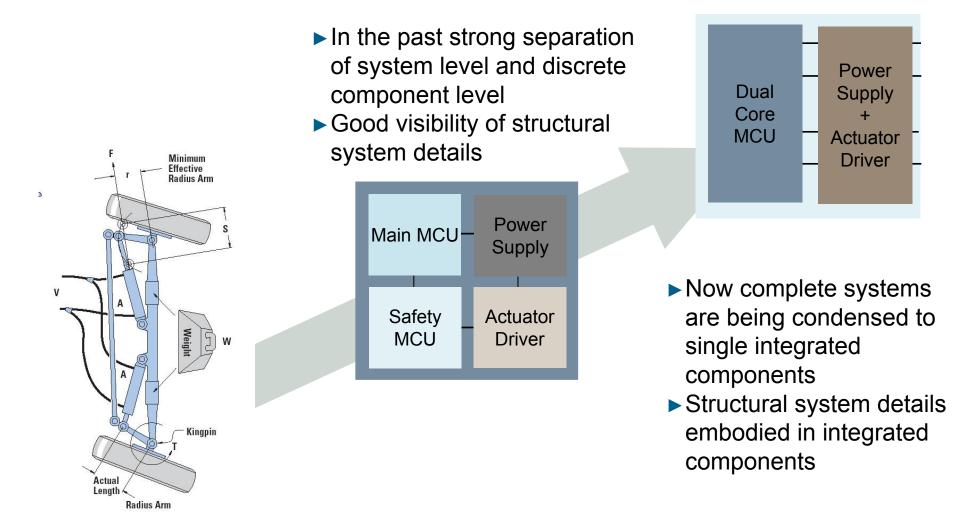
Freescale Introduces Product Longevity Program

- The embedded market needs long-term product support, which allows OEMs to provide assurance to their customers
- Freescale has a longstanding track record of providing long-term production support for our products
- Freescale is pleased to introduce a formal product longevity program for the market segments we serve
 - For the automotive and medical segments, Freescale will manufacture select devices for a minimum period of 15 years
 - For all other market segments in which Freescale participates, Freescale will manufacture select devices for a minimum period of 10 years
- A list of applicable Freescale products is available at www.freescale.com.

Automotive Safety and Functional Safety


"Safety is freedom from unacceptable risk" (IEC 61508)

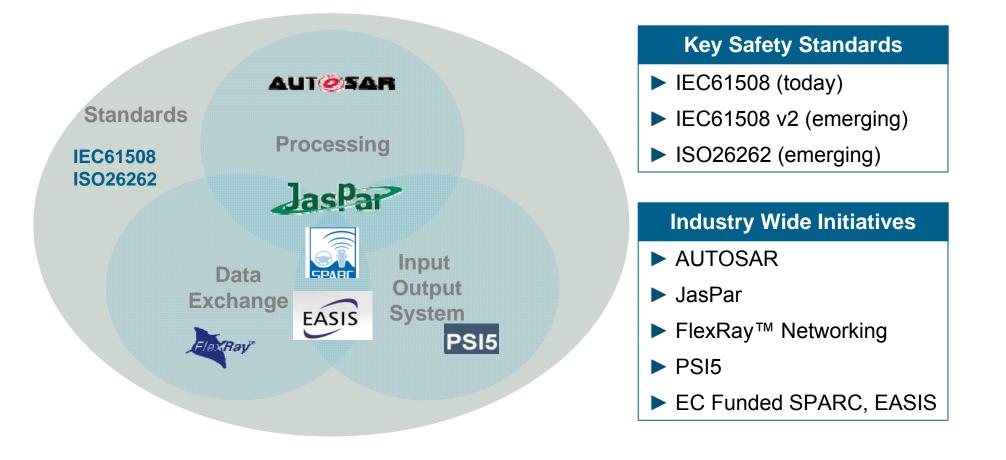
Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009.


5

Evolution of Functional Safety Approaches

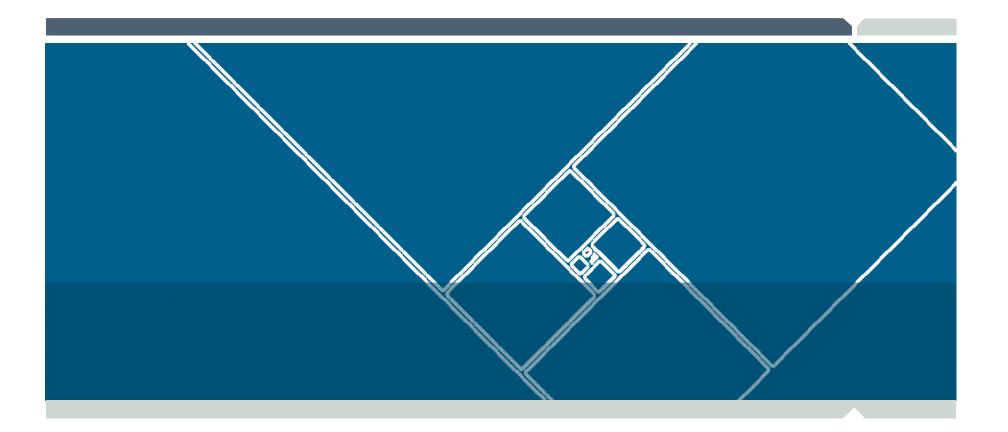
From Components to Integrated Systems

Systems and Standards


Semiconductor manufacturers are moving towards safety systems suppliers

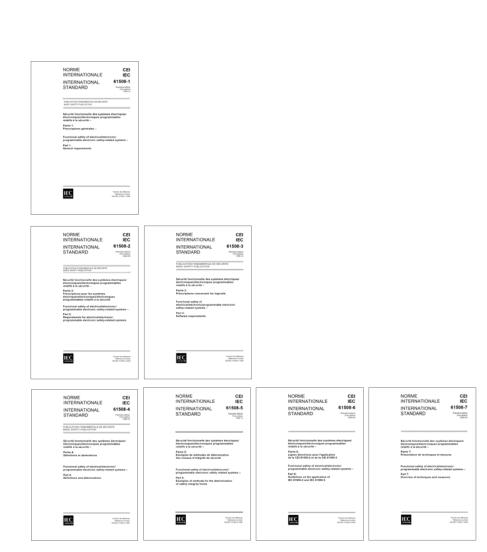
Industry-wide cooperation and standardization emerging to harmonize system related aspects across industry

Industry-wide Initiatives for Standards



Role of Safety Standards

- Standards are emerging as a framework to establish metrics and value network
- ►IEC61508
 - V1 since late 1990s, V2 announced
 - Safety lifecycle defined
 - Recommended and mandatory practices
- ►ISO26262
 - Current draft, release expected ~2011
 - Refinement of IEC61508 to comply with needs specific to the application sector of E/E systems within road vehicles



IEC61508 Safety Standard

The Seven Parts of IEC 61508

- ► 1: General Requirements
- 2: Requirements for electrical / electronic / programmable electronic safety-related systems (means HW)
- 3: Software Requirements
- 4: Definitions and abbreviations
- 5: Examples of methods for the determination of safety integrity levels
- 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3
- 7: Overview of techniques and measures

lormative

How does IEC61508 define Functional Safety?

Safety

• "freedom from unacceptable risk"

► Risk

 "combination of the probability of occurrence of harm and the severity of that harm"

►Harm

• "physical injury or damage to the health of people either directly or indirectly as a result of damage to property or to the environment"

Functional safety

 "part of the overall safety relating to the equipment under control (EUC) and the EUC control system which depends on the correct functioning of the electrical/electronic/programmable electronic (E/E/PE) safety-related systems, other technology related safety-related systems and external risk reduction facilities"

Quantitative Requirements of IEC61508

►IEC 61508

- Four Safety Integrity Levels (SIL)
- Two key metrics
 - Probability of dangerous failure per hour (PFH)
 - Safe Failure Fraction (SFF)
- Hardware redundancy in formulas (HFT)

	SIL 1	SIL 2	SIL 3
PFH [1/h]	<10 ⁻⁵	<10 ⁻⁶	<10 ⁻⁷
SFF (HFT=0)	>=60%	>=90%	>=99%
SFF (HFT=1)	-	>=60%	>=90%

Note: Table adopted for typical automotive application

Quantitative Requirements of IEC61508

►IEC 61508

- Four Safety Integrity Levels (SIL)
- Two key metrics
 - Probability of dangerous failure per hour (PFH)
 - Safe Failure Fraction (SFF)
- Hardware redundancy in formulas (HFT)

	SIL 1	SIL 2	SIL 3
PFH [1/h]	<10 ⁻⁵	<10 ⁻⁶	<10 ⁻⁷
SFF (HFT=0)	>=60%	>=90%	>=99%
SFF (HFT=1)	-	>=60%	>=90%

Note: Table adopted for typical automotive application

Safety Integrity Levels

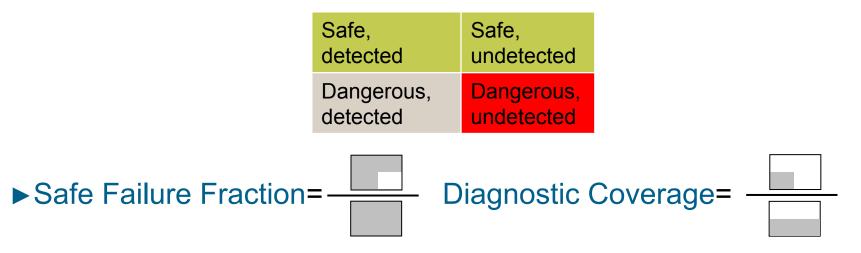
- SIL: "discrete level for specifying the safety integrity requirements of the safety functions to be allocated to the E/E/PE safety-related systems, where safety integrity level 4 has the highest level of safety integrity and safety integrity level 1 has the lowest"
- Approaches to determine the SIL
 - Quantitative methods: such as via probability of a dangerous failure per hour for continuous mode of operation
 - Qualitative methods: such as risk graph or hazardous event severity matrix

Quantitative Requirements of IEC61508

►IEC 61508

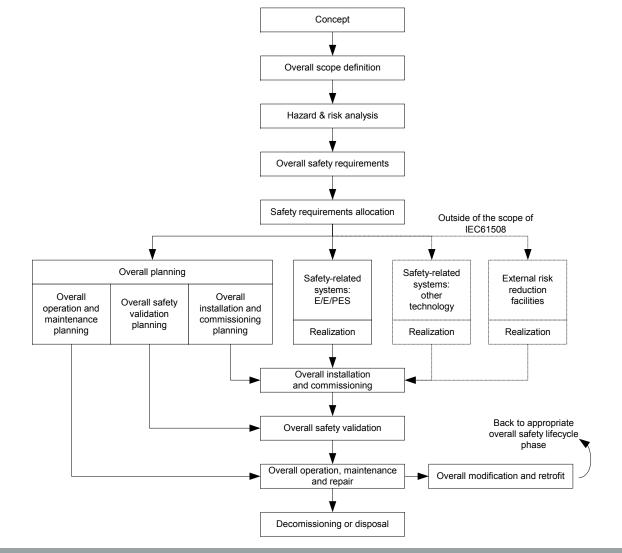
- Four Safety Integrity Levels (SIL)
- Two key metrics
 - Probability of dangerous failure per hour (PFH)
 - Safe Failure Fraction (SFF)
- Hardware redundancy in formulas (HFT)

	SIL 1	SIL 2	SIL 3
PFH [1/h]	<10 ⁻⁵	<10 ⁻⁶	<10 ⁻⁷
SFF (HFT=0)	>=60%	>=90%	>=99%
SFF (HFT=1)	-	>=60%	>=90%


Note: Table adopted for typical automotive application

Key Metrics

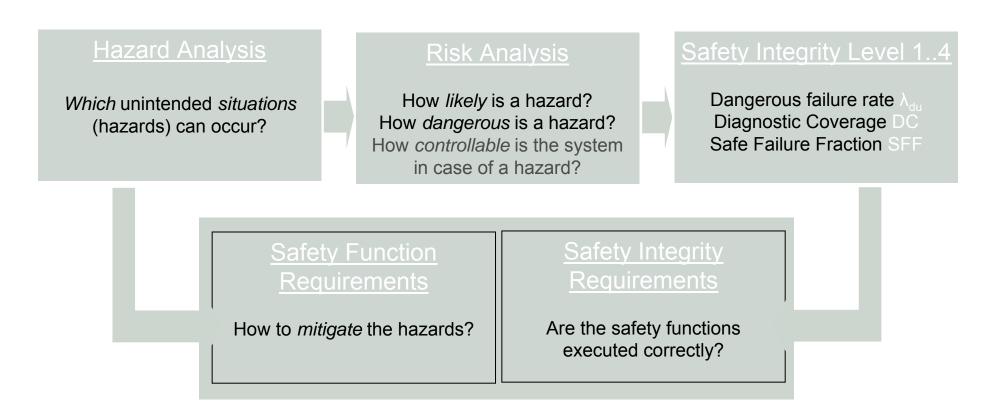
- Probability of dangerous failure per hour (PFH)
 - Target values depend on mode of system (low demand versus *high demand/continuous*), complexity of system (Type A (simplex)) versus *Type B (complex)*) and additional *customer requirements*
- Safe Failure Fraction
 - the ratio of the average rate of safe failures plus dangerous detected failures of the system to the total average failure rate of the system



Safe Failure Fraction and Diagnostic Coverage

- Note: SFF is computed from the <u>RATES</u> (approx. probabilities) of the different failure classes
 - SFF = $(\sum \lambda_{S} + \sum \lambda_{DD})/(\sum \lambda_{S} + \sum \lambda_{DD} + \sum \lambda_{DU})$
 - Where:
 - $\sum \lambda_s$: total rate of safe failures
 - $\sum \lambda_{DD}$: total rate of dangerous detected failures
 - $\sum \lambda_{DU}$: total rate of dangerous undetected failures

IEC61508 Safety Lifecycle



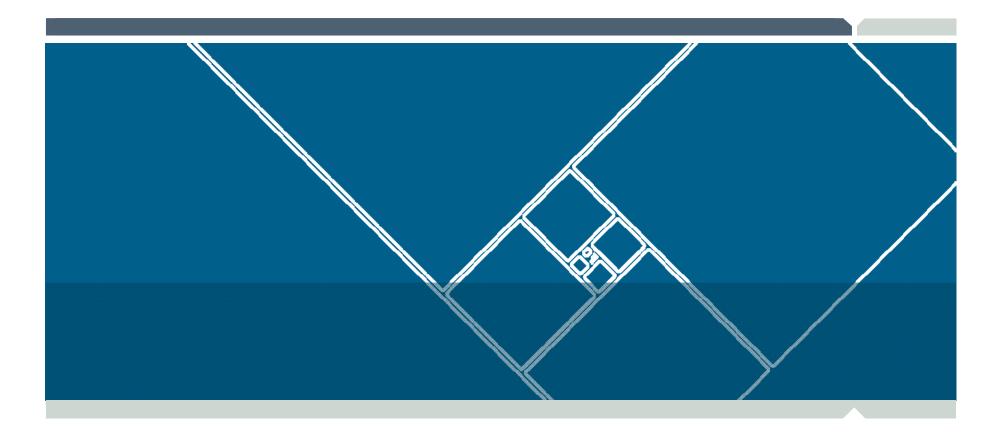
Outline for Designing a Safe System

Safety Integrity Level 1..4 **Risk Analysis** Dangerous failure rate How likely is a hazard? Which unintended situations How dangerous is a hazard? Diagnostic Coverage DC (hazards) can occur? Safe Failure Fraction SFF How controllable is the system in case of a hazard? **Requirements** Requirements Are the safety functions How to *mitigate* the hazards? executed correctly?

Outline for Designing a Safe System

Refine the system until the remaining risk is below the highest acceptable risk

What the Standard Says for Hardware Components


Hardware safety integrity	Systematic safety integrity	Avoidance of systematic failures during the different phases of the lifecycle (relating to processes)
 Faults or failures to be analyzed in the derivation of safe failure fraction Faults or failures to be detected during operation 	 Techniques and measures to control: systematic failures caused by hardware and software design systematic failures caused by environmental stress or influences systematic operational failures 	 Recommendations to avoid mistakes: during specification of E/E/PES requirements during E/E/PES design and development during E/E/PES integration during E/E/PES operation and maintenance procedures during E/E/PES safety validation
 Recommended Highly recommended Mandatory measures 	 Recommended Highly recommended Mandatory measures 	 Recommended Highly recommended Mandatory techniques
Guidelines for assessing the maximum diagnostic coverage considered achievable through various techniques	Guidelines for assessing the effectiveness of techniques and measures to control systematic failures	Guidelines for assessing the effectiveness of techniques and measures to avoid systematic failures

Conclusion

- Applying all measures to achieve hardware safety integrity for a specific Safety Integrity Level would make a system far too expense
- The right choice of measures is required
- (Effective!) use of error detection and diagnostic capabilities to detect dangerous failures
 - Error detection measures
 - Stop errors from propagating beyond component boundary
 - Error correction (compensation)
 - Shut down (fail-silent)
 - Self test measures
 - Ensure that the device is free from dormant faults
 - Software self-test, various BIST mechanisms

ISO26262 Safety Standard (draft)

The Nine Parts of ISO26262

- ► ISO 26262 is the adaptation of IEC61508 in automotive industry
- ISO 26262 applies to safety related E/E systems installed in road vehicles of class M, N and O (see 70/156/EC)
- ► ISO 26262 consists of the following parts:
 - Part 1: Glossary
 - Part 2: Management of functional safety
 - Part 3: Concept phase
 - Part 4: Product development: system level
 - Part 5: Product development: hardware level
 - Part 6: Product development: software level
 - Part 7: Production and operation
 - Part 8: Supporting processes
 - Part 9: ASIL-oriented and safety-oriented analyses (analysis techniques)

Objective

- ISO 26262 addresses hazards caused by safety related E/E systems due to malfunctions, excluding nominal performances of active and passive safety systems
 - Provides an automotive safety lifecycle (management, development, production, operation, service, decommissioning) and supports tailoring the necessary activities during these lifecycle phases
 - Provides an automotive specific risk-based approach for determining risk classes (Automotive Safety Integrity Levels, ASILs)
 - Uses ASILs for specifying the item's necessary safety requirements for achieving an acceptable residual risk
 - Provides requirements for validation and confirmation measures to ensure a sufficient and acceptable level of safety being achieved

Quantitative Requirements ISO26262

►ISO 26262

- Four Automotive SILs (ASIL)
- Three key metrics
 - Probability of violation of safety goals (PVSG)
 - Single Point Fault Metric
 - Latent Fault Metric
- Hardware redundancy in structural modeling

-	ASIL B	ASIL C	ASIL D
PVSG [1/h]	<10 ⁻⁷ (recom.)	<10 ⁻⁷	<10 ⁻⁸
SPFM	>90%	>97%	>99%
LFM	>60%	>80%	>90%

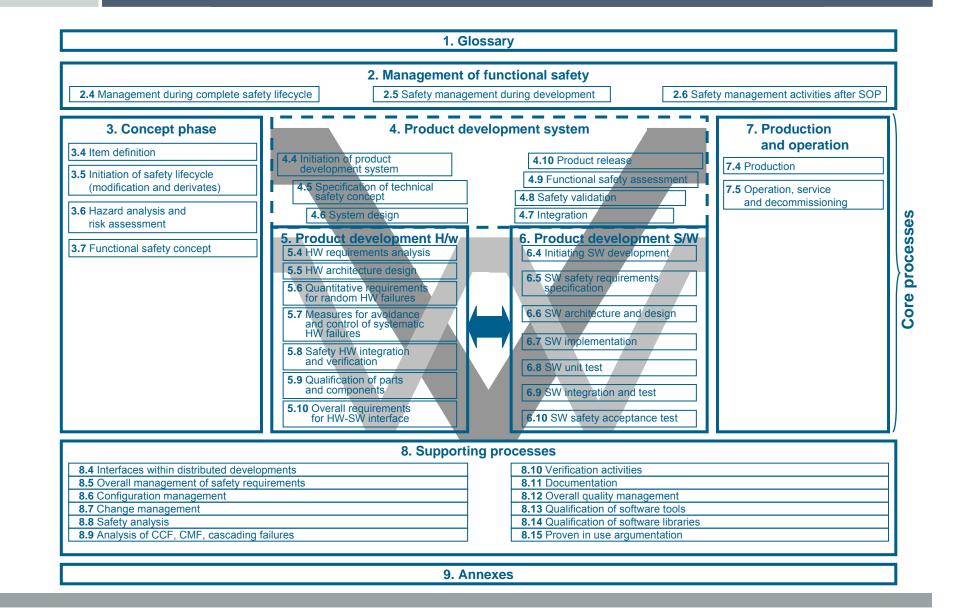
Automotive Safety Integrity Levels

- ASIL: "One of four classes to specify the item's necessary safety requirements for achieving an acceptable residual risk with D representing the highest and A the lowest class"
- Approaches to determine the ASIL
 - Focus on qualitative methods: such as risk graph or hazardous event severity matrix → see next slide

Determining Required ASIL

Classes of severity	Classes of	Classes of controllability (by driver)		
	probability of exposure regarding operational situations	C1 (simple)	C2 (normal)	C3 (difficult, uncontrollable)
S1	E1 (very low)	QM	QM	QM
Light and moderate injuries	E2 (low)	QM	QM	QM
injuneo	E3 (medium)	QM	QM	А
	E4 (high)	QM	А	В
S2	E1 (very low)	QM	QM	QM
Severe and life threatening injuries	E2 (low)	QM	QM	А
(survival probable)	E3 (medium)	QM	А	В
	E4 (high)	А	В	С
S3	E1 (very low)	QM	QM	А
Life threatening injuries, fatal injuries	E2 (low)	QM	А	В
	E3 (medium)	А	В	С
	E4 (high)	В	С	D

Quantitative Requirements ISO26262


►ISO 26262

- Four Automotive SILs (ASIL)
- Three key metrics
 - Probability of violation of safety goals (PVSG)
 - Single Point Fault Metric
 - Latent Fault Metric
- Hardware redundancy in structural modeling

	ASIL B	ASIL C	ASIL D
PVSG [1/h]	<10 ⁻⁷ (recom.)	<10 ⁻⁷	<10 ⁻⁸
SPFM	>90%	>97%	>99%
LFM	>60%	>80%	>90%

Key Metrics

- Probability of violation of safety goals
 - Equivalent to PFH in IEC61508
- Single Point Fault Metric
 - Quantifies how many potentially immediately dangerous faults are either safe or detected
- Latent Fault Metric
 - Quantifies how many potentially dangerous faults that not yet influence the application are either safe or detected → under discussion, consult standard!

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009.

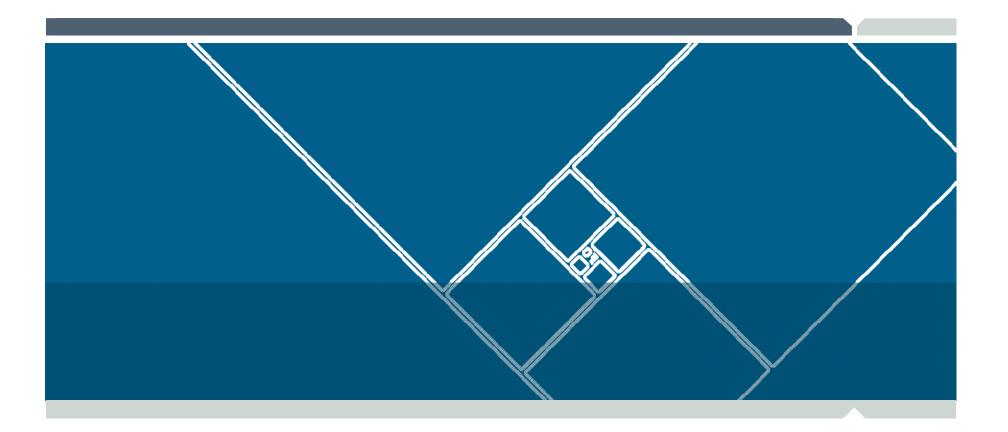
29

Quantitative Requirements of IEC61508 versus ISO26262

►IEC 61508

- Four Safety Integrity Levels (SIL)
- Two key metrics
 - Probability of dangerous failure per hour (PFH)
 - Safe Failure Fraction (SFF)
- Hardware redundancy in formulas (HFT)

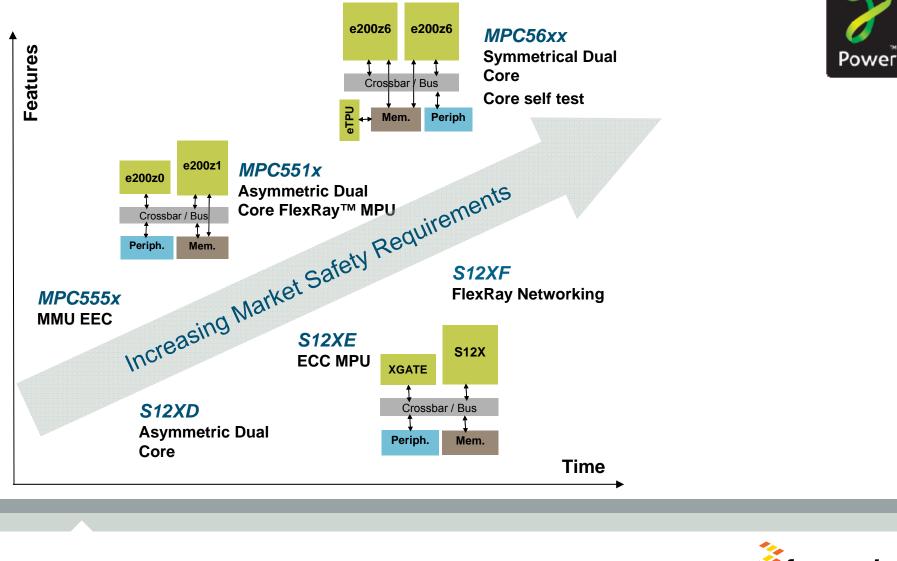
	SIL 1	SIL 2	SIL 3
PFH [1/h]	<10 ⁻⁵	<10 ⁻⁶	<10 ⁻⁷
SFF (HFT=0)	>=60%	>=90%	>=99%
SFF (HFT=1)	-	>=60%	>=90%


Note: Table adopted for typical automotive application

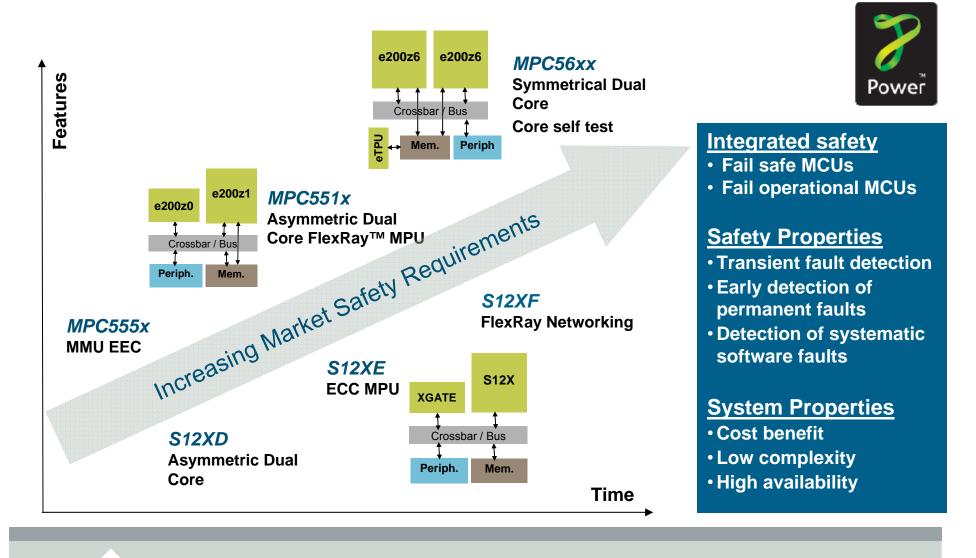
►ISO 26262

- Four Automotive SILs (ASIL)
- Three key metrics
 - Probability of violation of safety goals (PVSG)
 - Single Point Fault Metric
 - Latent Fault Metric
- Hardware redundancy in structural modeling

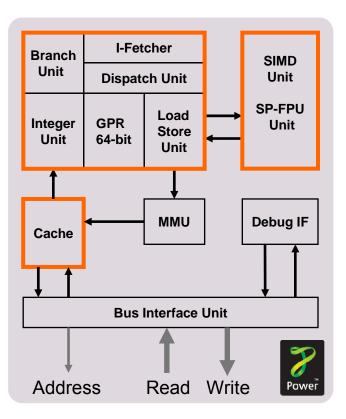
-	ASIL B	ASIL C	ASIL D
PVSG [1/h]	<10 ⁻⁷ (recom.)	<10 ⁻⁷	<10 ⁻⁸
SPFM	>90%	>97%	>99%
LFM	>60%	>80%	>90%



MCU Safety Continuum



Integrated Safety Features



Integrated Safety Features

Processor Core — Performance

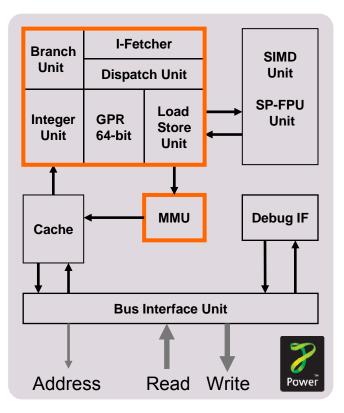
Example: Freescale e200 core family built on Power Architecture[®] technology

Example: Increased pipeline depth

- Typically 7-stages+ pipeline architectures allows more instructions per clock cycle
- Most instructions provide single cycle execution
- Integer and floating point multiply and multiply-accumulate in three clocks, fully pipelined

► Example: Dual instruction issue

 Two execution units allow parallel processing of instructions

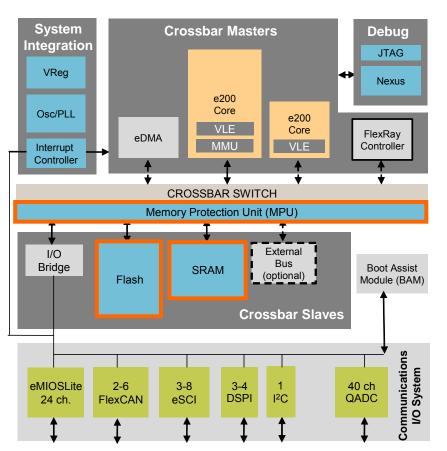

Example: Instruction and data cache

- I-cache to speed up executable instruction fetch
- D-cache to speed up data fetch and store
- TLB to improve the speed of virtual address translation

► Example: SIMD unit and FPU

- Provides DSP capabilities
- Executes an operation on two separate sets of data

Processor Core — Safety


Example: Freescale e200 core family built on Power Architecture[®] technology

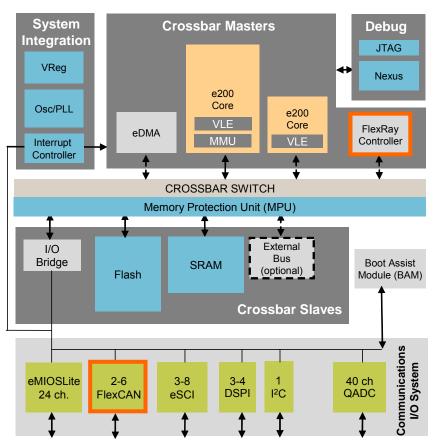
Example: Memory management unit (MMU)

- Optimization of self test coverage by using different virtual adresses without relocating customer application data and code
- MMU can be used to protect accesses due to occurence of faults in the core (exception generation)
- Example: Multiple input shift register (MISR)
- Method for verifying all intermediate results of a set of architected registers at the end of an instruction stream
- Introduction of MISR improves observability of the core resulting in:
 - Increased self test coverage
 - Faster detection of dormant faults

Memories and Crossbar — Safety

Example: Typical 32-bit MPC55/56xx processor

Example: Memory protection unit


- Monitors all system bus transactions and evaluates the appropriateness of each transfer
- Pre-programmed region descriptors define memory spaces and associated access rights
- Unmapped references are terminated with a protection error response

► Example: Error-correcting code

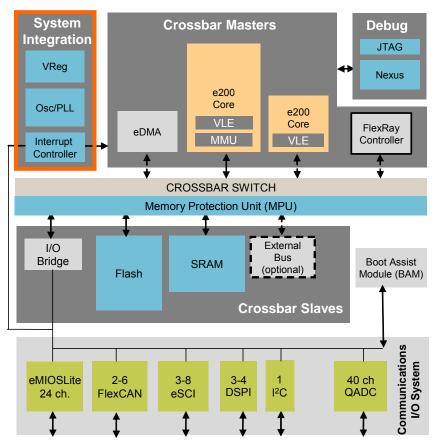
- Used to detect failures of flash/SRAM stored data
- Typical solution for correcting bitflips caused by soft error rate (SER) impact
- ECC module (64 data bits + 8 ECC bits) can:
 - Correct all single bit errors
 - Detect all dual bit faults
 - Detect several faults affecting >2 bits

Example: Typical 32-bit MPC55/56xx processor

Communication — Safety

► Example: FlexRayTM networking

- FlexRay master controller directly linked to the crossbar
- Replicated transmission of safety relevant data by single/dual channel FlexRay support with 2.5, 5 and 10 MBit/s data rates
- Message buffer stored and protected in dedicated memory partition located in system memory


Example: Safety port

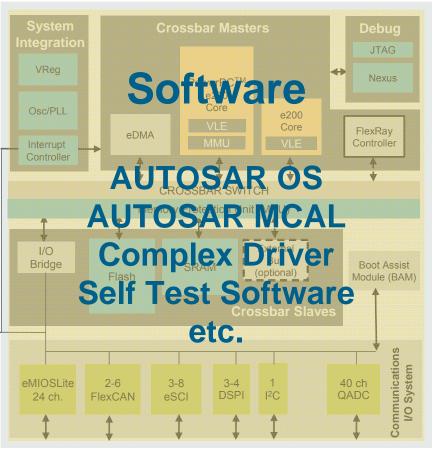
- Controller area network (CAN)-type interface supporting high bandwidth for fast MCU-MCU communication
- Bit rate up to 7.5 Mbit/s
- 32 message buffers of 0 to eight bytes data length

Power Supply and Clock — Safety

Example: Typical 32-bit MPC55/56xx processor

Example: Power supply

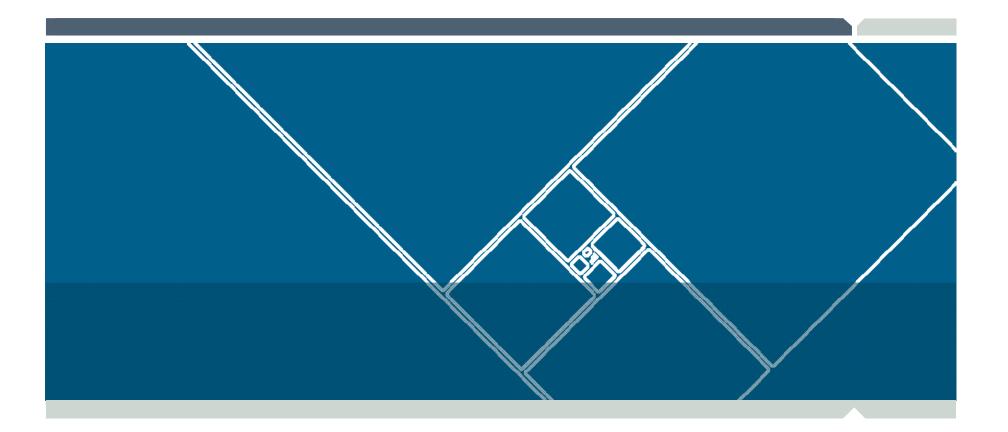
- Monitoring of internal and external voltages internal and external power supply
- · Over- and undervoltage detection
- Testing capability of monitoring circuitry e.g., for detection of dormant faults


► Example: Clock and monitoring

- Clock monitoring for system and periphery clock:
 - Loss of crystal or PLL clock
 - PLL frequency higher/lower than reference
- Redundant clock generation with internal RC oscillator
- Glitch filtering with on-chip PLL

Software – Safety

Example: Typical 32-bit MPC55/56xx processor


► Example: Core self test — basic

- Coverage: instruction-set based, all addressing modes
- Integration: mostly interruptible, low integration effort
- Safety: not fault graded, determined behavior in fault-free case
- For PPC instruction set

► Example: Core self test – advanced

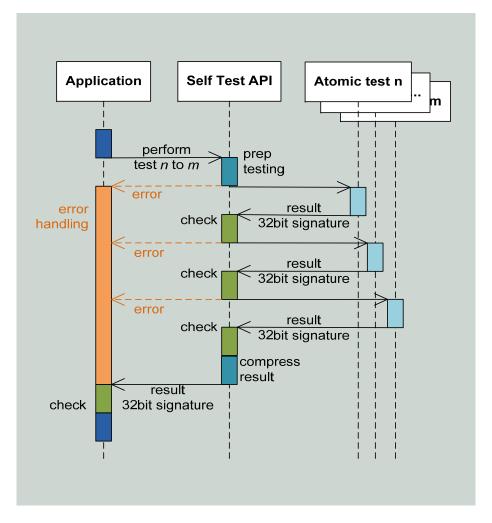
- Coverage: stuck-at fault model, based on physics of failure
- Integration: partly interruptible, can be adjusted to application/OS specifics
- Safety: detailed test coverage provided, fault graded, determined behavior in faultfree and faulty case
- For selected PPC devices

Basic Core Self-Test

CST with Instruction Coverage Metric

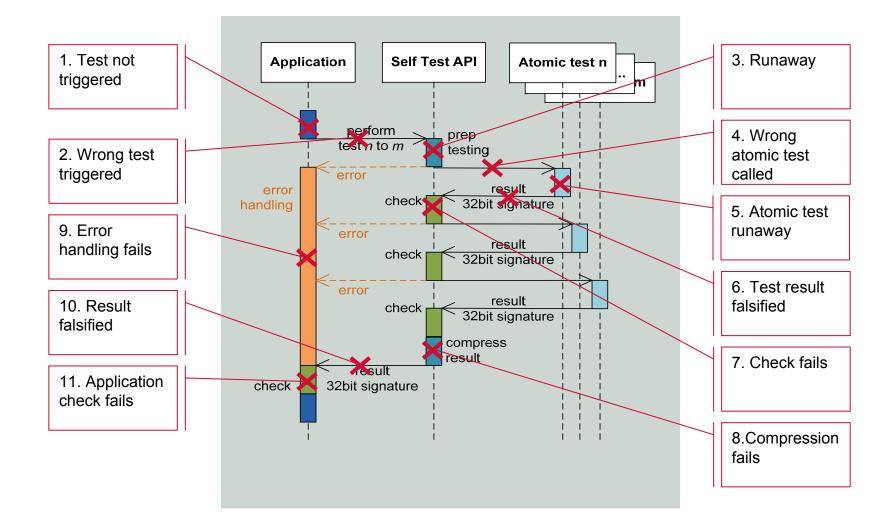
		Instruction sets			
		BookE instructions	VLE instructions	SPE instructions	
Instruction coverage*		~83% to ~98%	~86% to ~98%	Estimated 85% to 99%	
Code size (bytes)		< 10k	< 5k	In development	
Execution time (clock cycles)		< 6000	< 5000	In development	
Supported PPC Cores	Z6	Supported	Supported	In development	
	Z3	Supported	Supported	In development	
	Z1	Supported	Supported	Not applicable	
	Z0	Not applicable	Supported	Not applicable	

* Variability caused by whether instructions or operations (performed by instructions) are considered, and whether MMU and cache configuration instructions/operations are taken into account or not


Basic Operating Principle

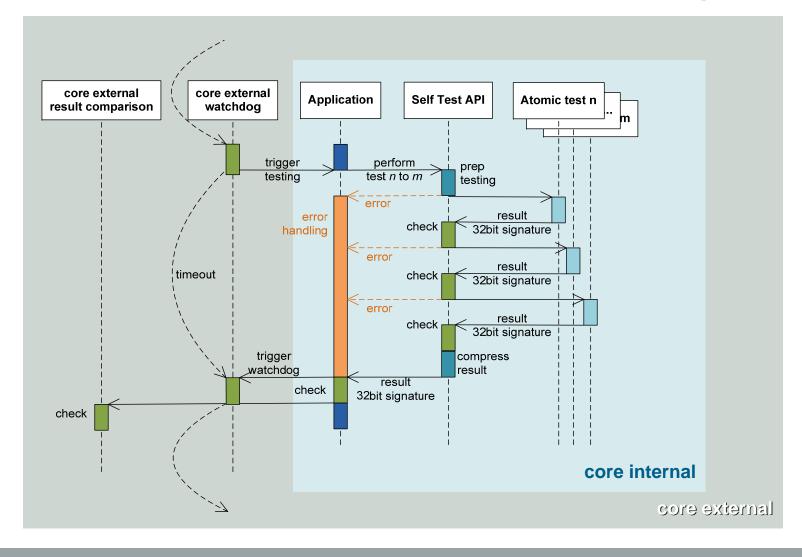
Application

- Triggers test execution
- Selects subset of tests to perform
- Checks actual versus expected result

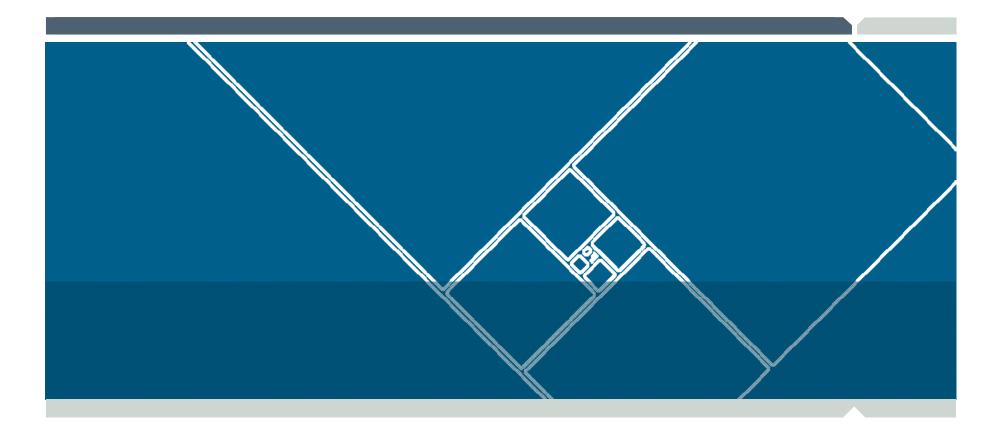

Self test API

- Saves application context
- Prepares core and device for testing
- Calls atomic tests
- Checks results
- Restores application context
- Compresses atomic test results into one 32-bit signature
- Atomic test
 - · Short piece of assembly code
 - Optimizes to activate and propagate faults in different core modules

Potential Issues beyond the Self-Test Software


Mitigation Measures

		Can be caught by		
		Basic Watchdog	Intelligent watchdog	Application check and signature
1	Test not triggered	\checkmark		
2	Wrong test triggered			\checkmark
3	Runaway			\checkmark
4	Wrong atomic test called			\checkmark
5	Atomic Test Runaway	\checkmark		
6	Test result falsified			\checkmark
7	Check fails			\checkmark
8	Compression fails			\checkmark
9	Error handling fails		\checkmark	
10	Result falsified			\checkmark
11	Application check fails		\checkmark	


- Watchdog and redundant result check
 - External to core
 - May be device internal, however (coprocessor, ETPU, etc.)
- Application check
 - Unique result for each atomic test

Overall Operating Principle

Summary

Summary

- Safety standards are becoming key for the design of new controller solutions and influence the architecture of virtually all building blocks
- Freescale sees safety, and in particular, functional safety as a key paradigm of next generation electronic vehicle systems
- Freescale is continuously expanding the product controller, analog and sensor portfolio to address the needs of these systems in line with IEC61508 and ISO26262

Q&A

Thank you for attending this presentation. We'll now take a few moments for the audience's questions and then we'll begin the question and answer session.

